A $${{\varvec{\Phi}}}$$ 6-m Tunnel Boring Machine Steel Arch Splicing Manipulator

Author:

He Yuanfu,Xia Yimin,Xu Zhen,Yao Jie,Ning Bo,Xiao Xuemeng

Abstract

AbstractRobotic splicing of steel arches is a challenging task that is necessary to realize the grasping and docking of steel arches in a limited space. Steel arches often have a mass of more than 200 kg and length of more than 4 m. Owing to the large volume and mass of steel arches and the high requirements for accurately positioning the splicing, it is difficult for a general manipulator to meet the stiffness requirements. To enhance the structural stiffness of the steel arch splicing manipulator, a single-degree-of-freedom (DOF) closed-loop mechanism was added to the grasping structure of the manipulator. Based on the basic principle of structural synthesis, a solution model of the single-DOF closed-loop mechanism was developed, and alternative kinematic pairs of the mechanism with different input constraints and output requirements were derived. Based on this model, a design method for a single-DOF closed-loop grasping mechanism and a posture adjustment mechanism for a steel arch was devised. Combined with the same dimensional subspace equivalence principle of the graphical-type synthesis method, 12 types of steel arch splicing manipulator were constructed. By analyzing the motion/force transmission and structural complexity of the steel arch splicing manipulators, the best scheme was selected. A prototype of the steel arch splicing manipulator was manufactured. Adams software was used to obtain clearly the output trajectory of the end of the manipulator. The relative spatial positions of the upper and lower jaws under different working stages were analyzed, demonstrating that the manipulator satisfied the grasping requirements. Through a steel arch splicing experiment, the grasping effect, docking accuracy, and splicing efficiency of the manipulator met the design requirements. The steel arch splicing manipulator can replace the manual completion of the steel arch splicing operation, significantly improving the operation efficiency.

Funder

the Major Science and Technology Projects of Hunan Province

the National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3