Underwater Shaking-Table Investigation of Complex Deep-Water Pile-Cap Foundation for Xihoumen Rail-cum-Road Bridge

Author:

Wang Lei12ORCID,Lv Zhong-da2ORCID,Wang Fei2,Zhao Zhuo2,Dong Xin-long1

Affiliation:

1. MOE Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China

2. Engineering Research Center of Industrial Construction in Civil Engineering of Zhejiang Province, Ningbo University of Technology, Ningbo 315211, China

Abstract

To study the mechanical characteristics of complex pile-cap foundations and the distribution law of hydrodynamic pressure acting on piles and cap in deep-water environments, the 60 m deep-water pile-cap foundation of Xihoumen rail-cum-road bridge was considered for this investigation. This paper focused on introducing the design and implementation process of simulating an earthquake using an underwater shaking-table test for a 1 : 60 complex pile-cap foundation model and systematically summarizing the test results. The test results showed that water reduced the acceleration of complex pile-cap foundation; however, the strain, displacement, and hydrodynamic pressure increased in varying degrees with water depths, and the maximum strain of the piles increased by 13.8% for the X-direction earthquake excitation and 15.1% for the Y-direction earthquake excitation in 1.0 m water-depth environment. The strain of the corner pile was the largest under earthquake excitation, followed by that of the front-row pile, and the strain of the middle pile was the smallest. When the water depth was 1.0 m, the maximum strain difference of each pile in the X- and Y-directions reached 26.4% and 27.5%, respectively. The hydrodynamic pressure acting on the piles decreased gradually from bottom to top, the edge pile bore more hydrodynamic pressure than the middle pile, and the hydrodynamic pressure difference between the piles reached 20%. Owing to the influence of the round-ended cap, the hydrodynamic pressure suddenly increased at the cap position, and the distribution law of the cap showed a gradually declining trend from front to side; however, the attenuation amplitude was affected by its shape.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3