Energy supply during nocturnal endurance flight of migrant birds: effect of energy stores and flight behaviour

Author:

Jenni-Eiermann Susanne,Liechti Felix,Briedis Martins,Rime Yann,Jenni Lukas

Abstract

Abstract Background Migrating birds fly non-stop for hours or even for days. They rely mainly on fat as fuel complemented by a certain amount of protein. Studies on homing pigeons and birds flying in a wind-tunnel suggest that the shares of fat and protein on total energy expenditure vary with flight duration and body fat stores. Also, flight behaviour, such as descending flight, is expected to affect metabolism. However, studies on free flying migrant birds under natural conditions are lacking. Methods On a Swiss Alpine pass, we caught three species of nocturnal migrant passerines out of their natural migratory flight. Since most night migrants start soon after dusk, we used time since dusk as a measure of flight duration. We used plasma concentrations of metabolites of the fat, protein, and carbohydrate metabolism as indicators of relative fuel use. We used flight altitudes of birds tracked with radar and with atmospheric pressure loggers to characterize flight behaviour. Results The indicators of fat catabolism (triglycerides, very low-density lipoproteins, glycerol) were positively correlated with body energy stores, supporting earlier findings that birds with high fat stores have a higher fat catabolism. As expected, plasma levels of triglycerides, very low-density lipoproteins, glycerol and ß-hydroxy-butyrate increased at the beginning of the night, indicating that nocturnal migrants increased their fat metabolism directly after take-off. Surprisingly, fat catabolism as well as glucose levels decreased in the second half of the night. Data from radar observations showed that the number of birds aloft, their mean height above ground and vertical flight speed decreased after midnight. Together with the findings from atmospheric pressure-loggers put on three species, this shows that nocturnal migrants migrating over continental Europe descend slowly during about 1.5 h before final landfall at night, which results in 11–30% energy savings according to current flight models. Conclusions We suggest that this slow descent reduces energy demands to an extent which is noticeable in the plasma concentration of lipid, protein, and carbohydrate metabolites. The slow descent may facilitate the search for a suitable resting habitat and serve to refill glycogen stores needed for foraging and predator escape when landed.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3