Long-duration wind tunnel flights reveal exponential declines in protein catabolism over time in short- and long-distance migratory warblers

Author:

Elowe Cory R.12ORCID,Groom Derrick J. E.13ORCID,Slezacek Julia4,Gerson Alexander R.12ORCID

Affiliation:

1. Department of Biology, University of Massachusetts, Amherst, MA 01003-9297

2. Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003-9297

3. Department of Biology, San Francisco State University, San Francisco, CA 94132

4. Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna 1160, Austria

Abstract

During migration, long-distance migratory songbirds may fly nonstop for days, whereas shorter-distance migrants complete flights of 6 to 10 h. Fat is the primary fuel source, but protein is also assumed to provide a low, consistent amount of energy for flight. However, little is known about how the use of these fuel sources differs among bird species and in response to flight duration. Current models predict that birds can fly until fat stores are exhausted, with little consideration of protein’s limits on flight range or duration. We captured two related migratory species—ultra long-distance blackpoll warblers ( Setophaga striata ) and short-distance yellow-rumped warblers ( Setophaga coronata )—during fall migration and flew them in a wind tunnel to examine differences in energy expenditure, overall fuel use, and fuel mixture. We measured fat and fat-free body mass before and after flight using quantitative magnetic resonance and calculated energy expenditure from body composition changes and doubly labeled water. Three blackpolls flew voluntarily for up to 28 h—the longest wind tunnel flight to date—and ended flights with substantial fat reserves but concave flight muscle, indicating that protein loss, rather than fat, may actually limit flight duration. Interestingly, while blackpolls had significantly lower mass-specific metabolic power in flight than that of yellow-rumped warblers and fuel use was remarkably similar in both species, with consistent fat use but exceptionally high rates of protein loss at the start of flight that declined exponentially over time. This suggests that protein may be a critical, dynamic, and often overlooked fuel for long-distance migratory birds.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3