Fuel stores and time of day account for variation in serum metabolomes of passerine migrants stopping over

Author:

Zimin Sean V.1ORCID,Zimin Anna2ORCID,Shochat Eyal13ORCID,Brotman Yariv1ORCID,Ovadia Ofer14ORCID

Affiliation:

1. Department of Life Sciences, Ben‐Gurion University of the Negev Beer‐Sheva Israel

2. School of Zoology, Tel Aviv University Tel Aviv Israel

3. Hoopoe Ornithology and Ecology Yeroham Israel

4. The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben‐Gurion University of the Negev Beer‐Sheva Israel

Abstract

Migratory birds excel in phenotypic flexibility, adapting physiologically as their life histories and environments require. Discerning the metabolic processes underlying migrants' physiology, an emergent property of multiple continuous and dynamic organism–environment interactions, is therefore challenging, particularly under natural conditions. Accordingly, analyses of snapshot‐sampled serum‐circulating metabolites, versatile and readily applicable for migrating birds, have increasingly become the method of choice for such physiologic inference. However, the atemporal nature of single sampling might obscure the links between observed metabolite concentrations and the processes producing them, necessitating an analytical decoupling of focal processes from their broader biochemical background.In the present study, we examined how variation in combined fat and muscle fuel stores, traits pivotal in migratory context, relates to the serum‐circulating metabolomes of spring‐migrating Eurasian blackcaps stopping‐over. Our analyses accounted for potential spatiotemporal influences in the form of time past night's fasting and random local conditions across three sites within the Negev Desert. We shifted the focus from compound‐level analysis of preselected metabolites towards the level of inclusive metabolome, quantifying serum‐circulating lipophilic and polar molecules via UHPLC–MS/MS untargeted metabolomic technique.Our results indicated a general relationship between fuel stores and the metabolome, comprising 16 326 lipophilic and 6923 polar compounds, among which 918 and 44 were annotated, respectively. By applying generalized latent‐variable linear modeling (GLLVM) upon concentrations of annotated metabolites, we identified several candidate biomarkers, some novel in migratory context, notably the fuel‐associated increase in serum ceramides likely derived from circulating very low‐density lipoproteins (VLDLs). Relying on estimated metabolite links with fuel and foraging time and on modeled residual covariations among metabolites, we demonstrate fuel–metabolite associations generally consistent with higher fat‐ and lower protein mobilization in birds having greater stores and with decreased fuel utilization as ingested nutrients accumulate over time, thus introducing a novel approach for the physiological study of migrating birds.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3