Abstract
Abstract
Background
Food flavors are relatively low molecular weight chemicals with unique odor-related functional groups that may also be associated with mutagenicity. These chemicals are often difficult to test for mutagenicity by the Ames test because of their low production and peculiar odor. Therefore, application of the quantitative structure–activity relationship (QSAR) approach is being considered. We used the StarDrop™ Auto-Modeller™ to develop a new QSAR model.
Results
In the first step, we developed a new robust Ames database of 406 food flavor chemicals consisting of existing Ames flavor chemical data and newly acquired Ames test data. Ames results for some existing flavor chemicals have been revised by expert reviews. We also collected 428 Ames test datasets for industrial chemicals from other databases that are structurally similar to flavor chemicals. A total of 834 chemicals’ Ames test datasets were used to develop the new QSAR models. We repeated the development and verification of prototypes by selecting appropriate modeling methods and descriptors and developed a local QSAR model. A new QSAR model “StarDrop NIHS 834_67” showed excellent performance (sensitivity: 79.5%, specificity: 96.4%, accuracy: 94.6%) for predicting Ames mutagenicity of 406 food flavors and was better than other commercial QSAR tools.
Conclusions
A local QSAR model, StarDrop NIHS 834_67, was customized to predict the Ames mutagenicity of food flavor chemicals and other low molecular weight chemicals. The model can be used to assess the mutagenicity of food flavors without actual testing.
Funder
Japan Agency for Medical Research and Development
Ministry of Health, Labour and Welfare
Publisher
Springer Science and Business Media LLC
Subject
Environmental Science (miscellaneous),Genetics,Social Psychology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献