A deep learning-based framework for lung cancer survival analysis with biomarker interpretation

Author:

Cui Lei,Li Hansheng,Hui Wenli,Chen Sitong,Yang Lin,Kang Yuxin,Bo Qirong,Feng JunORCID

Abstract

Abstract Background Lung cancer is the leading cause of cancer-related deaths in both men and women in the United States, and it has a much lower five-year survival rate than many other cancers. Accurate survival analysis is urgently needed for better disease diagnosis and treatment management. Results In this work, we propose a survival analysis system that takes advantage of recently emerging deep learning techniques. The proposed system consists of three major components. 1) The first component is an end-to-end cellular feature learning module using a deep neural network with global average pooling. The learned cellular representations encode high-level biologically relevant information without requiring individual cell segmentation, which is aggregated into patient-level feature vectors by using a locality-constrained linear coding (LLC)-based bag of words (BoW) encoding algorithm. 2) The second component is a Cox proportional hazards model with an elastic net penalty for robust feature selection and survival analysis. 3) The third commponent is a biomarker interpretation module that can help localize the image regions that contribute to the survival model’s decision. Extensive experiments show that the proposed survival model has excellent predictive power for a public (i.e., The Cancer Genome Atlas) lung cancer dataset in terms of two commonly used metrics: log-rank test (p-value) of the Kaplan-Meier estimate and concordance index (c-index). Conclusions In this work, we have proposed a segmentation-free survival analysis system that takes advantage of the recently emerging deep learning framework and well-studied survival analysis methods such as the Cox proportional hazards model. In addition, we provide an approach to visualize the discovered biomarkers, which can serve as concrete evidence supporting the survival model’s decision.

Funder

National Key Research and Development Program of China under grant

National Natural Science Foundation of China

Major Program of National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3