ctGAN: combined transformation of gene expression and survival data with generative adversarial network

Author:

Kim Jaeyoon1ORCID,Seok Junhee1

Affiliation:

1. School of Electrical and Computer Engineering, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul, 02841 , Korea

Abstract

Abstract Recent studies have extensively used deep learning algorithms to analyze gene expression to predict disease diagnosis, treatment effectiveness, and survival outcomes. Survival analysis studies on diseases with high mortality rates, such as cancer, are indispensable. However, deep learning models are plagued by overfitting owing to the limited sample size relative to the large number of genes. Consequently, the latest style-transfer deep generative models have been implemented to generate gene expression data. However, these models are limited in their applicability for clinical purposes because they generate only transcriptomic data. Therefore, this study proposes ctGAN, which enables the combined transformation of gene expression and survival data using a generative adversarial network (GAN). ctGAN improves survival analysis by augmenting data through style transformations between breast cancer and 11 other cancer types. We evaluated the concordance index (C-index) enhancements compared with previous models to demonstrate its superiority. Performance improvements were observed in nine of the 11 cancer types. Moreover, ctGAN outperformed previous models in seven out of the 11 cancer types, with colon adenocarcinoma (COAD) exhibiting the most significant improvement (median C-index increase of ~15.70%). Furthermore, integrating the generated COAD enhanced the log-rank p-value (0.041) compared with using only the real COAD (p-value = 0.797). Based on the data distribution, we demonstrated that the model generated highly plausible data. In clustering evaluation, ctGAN exhibited the highest performance in most cases (89.62%). These findings suggest that ctGAN can be meaningfully utilized to predict disease progression and select personalized treatments in the medical field.

Funder

National Research Foundation of Korea

Publisher

Oxford University Press (OUP)

Reference62 articles.

1. SuperstarGAN: generative adversarial networks for image-to-image translation in large-scale domains;Ko;Neural Netw,2023

2. Controllable generative adversarial network. IEEE;Lee;Access,2019

3. Computer code representation through natural language processing for fMRI data analysis;Kim;2022 International Conference on Artificial Intelligence in Information and Communication (ICAIIC),2022

4. Stock Price prediction through the sentimental analysis of news articles;Kim;2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN),2019

5. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?;Bernard;IEEE Trans Med Imaging,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3