Author:
Hao Yaru,Jing Xiao-Yuan,Sun Qixing
Abstract
Abstract
Background
Cancer is one of the leading death causes around the world. Accurate prediction of its survival time is significant, which can help clinicians make appropriate therapeutic schemes. Cancer data can be characterized by varied molecular features, clinical behaviors and morphological appearances. However, the cancer heterogeneity problem usually makes patient samples with different risks (i.e., short and long survival time) inseparable, thereby causing unsatisfactory prediction results. Clinical studies have shown that genetic data tends to contain more molecular biomarkers associated with cancer, and hence integrating multi-type genetic data may be a feasible way to deal with cancer heterogeneity. Although multi-type gene data have been used in the existing work, how to learn more effective features for cancer survival prediction has not been well studied.
Results
To this end, we propose a deep learning approach to reduce the negative impact of cancer heterogeneity and improve the cancer survival prediction effect. It represents each type of genetic data as the shared and specific features, which can capture the consensus and complementary information among all types of data. We collect mRNA expression, DNA methylation and microRNA expression data for four cancers to conduct experiments.
Conclusions
Experimental results demonstrate that our approach substantially outperforms established integrative methods and is effective for cancer survival prediction.
Availability and implementation
https://github.com/githyr/ComprehensiveSurvival.
Funder
the NSFC Project under Grant
the Innovation Group of Guangdong Education Department under Grant
the 2019 Key Discipline project of Guangdong Province
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献