Author:
Ding Dongyan,Lang Tingyuan,Zou Dongling,Tan Jiawei,Chen Jia,Zhou Lei,Wang Dong,Li Rong,Li Yunzhe,Liu Jingshu,Ma Cui,Zhou Qi
Abstract
Abstract
Background
Accurately forecasting the prognosis could improve cervical cancer management, however, the currently used clinical features are difficult to provide enough information. The aim of this study is to improve forecasting capability by developing a miRNAs-based machine learning survival prediction model.
Results
The expression characteristics of miRNAs were chosen as features for model development. The cervical cancer miRNA expression data was obtained from The Cancer Genome Atlas database. Preprocessing, including unquantified data removal, missing value imputation, samples normalization, log transformation, and feature scaling, was performed. In total, 42 survival-related miRNAs were identified by Cox Proportional-Hazards analysis. The patients were optimally clustered into four groups with three different 5-years survival outcome (≥ 90%, ≈ 65%, ≤ 40%) by K-means clustering algorithm base on top 10 survival-related miRNAs. According to the K-means clustering result, a prediction model with high performance was established. The pathways analysis indicated that the miRNAs used play roles involved in the regulation of cancer stem cells.
Conclusion
A miRNAs-based machine learning cervical cancer survival prediction model was developed that robustly stratifies cervical cancer patients into high survival rate (5-years survival rate ≥ 90%), moderate survival rate (5-years survival rate ≈ 65%), and low survival rate (5-years survival rate ≤ 40%).
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献