Abstract
AbstractDuring deep reactive ion etching (DRIE), microscale etch masks with small opening such as trenches or holes suffer from limited aspect ratio because diffusion of reactive ions and free radicals become progressively difficult as the number of DRIE cycle increases. For this reason, high aspect ratio structures of microscale trenches or holes are not readily available with standard DRIE recipes and microscale holes are more problematic than trenches due to omnidirectional confinement. In this letter, we propose an optimization for fabrication of high aspect ratio microscale hole arrays with an improved cross-sectional etch profile. Bias voltage and inductively coupled plasma power are considered as optimization parameters to promote the bottom etching of the high aspect ratio hole array. In addition, flow rates of octafluorocyclobutane (C$$_{4}$$
4
F$$_{8}$$
8
) and sulfur hexafluoride (SF$$_{6}$$
6
) for passivation and depassivation steps, respectively, are considered as optimization parameters to reduce the etch undercut. As a result of optimization, the aspect ratio of 20 is achieved for 1.3 μm-diameter hole array and etch area reduction at the bottom relative to the top is improved to 21%.
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering,Biomaterials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献