Author:
Sukegawa Satoru,Toki Seiichi,Saika Hiroaki
Abstract
AbstractGenome editing technology can be used for gene engineering in many organisms. A target metabolite can be fortified by the knockout and modification of target genes encoding enzymes involved in catabolic and biosynthesis pathways, respectively, via genome editing technology. Genome editing is also applied to genes encoding proteins other than enzymes, such as chaperones and transporters. There are many reports of such metabolic engineering using genome editing technology in rice. Genome editing is used not only for site-directed mutagenesis such as the substitution of a single base in a target gene but also for random mutagenesis at a targeted region. The latter enables the creation of novel genetic alleles in a target gene. Recently, genome editing technology has been applied to random mutagenesis in a targeted gene and its promoter region in rice, enabling the screening of plants with a desirable trait from these mutants. Moreover, the expression level of a target gene can be artificially regulated by a combination of genome editing tools such as catalytically inactivated Cas protein with transcription activator or repressor. This approach could be useful for metabolic engineering, although expression cassettes for inactivated Cas fused to a transcriptional activator or repressor should be stably transformed into the rice genome. Thus, the rapid development of genome editing technology has been expanding the scope of molecular breeding including metabolic engineering. In this paper, we review the current status of genome editing technology and its application to metabolic engineering in rice.
Funder
Bio-oriented Technology Research Advancement Institution
Cabinet Office, Government of Japan
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Soil Science,Agronomy and Crop Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献