Abstract
Abstract
Background
Whole-genome sequencing (WGS) is increasingly used to map the spread of bacterial and viral pathogens in nosocomial settings. A limiting factor for more widespread adoption of WGS for hospital infection prevention practices is the availability of standardized tools for genomic epidemiology.
Methods
We developed the Pathogen Sequencing Phylogenomic Outbreak Toolkit (PathoSPOT) to automate integration of genomic and medical record data for rapid detection and tracing of nosocomial outbreaks. To demonstrate its capabilities, we applied PathoSPOT to complete genome surveillance data of 197 MRSA bacteremia cases from two hospitals during a 2-year period.
Results
PathoSPOT identified 8 clonal clusters encompassing 33 patients (16.8% of cases), none of which had been recognized by standard practices. The largest cluster corresponded to a prolonged outbreak of a hospital-associated MRSA clone among 16 adults, spanning 9 wards over a period of 21 months. Analysis of precise timeline and location data with our toolkit suggested that an initial exposure event in a single ward led to infection and long-term colonization of multiple patients, followed by transmissions to other patients during recurrent hospitalizations.
Conclusions
We demonstrate that PathoSPOT genomic surveillance enables the detection of complex transmission chains that are not readily apparent from epidemiological data and that contribute significantly to morbidity and mortality, enabling more effective intervention strategies.
Funder
National Institutes of Health
New York State Department of Health
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献