Abstract
Abstract
Background
In this research, the effects of exogenous application of certain biostimulants [amino acid (AA), humic acid (HA), fulvic acid (FA), and seaweed extract (SE)] on the fruit yield and quality, leaf mineral contents, and some critical physio-chemical characteristics of grapevine (Vitis vinifera L.) cv. ‘Yaghouti’ were investigated under well-watered (WW) and drought-stressed (DS) conditions.
Results
Drought stress caused a remarkable reduction in the weight of 20 berries and fruit yield, and meanwhile a marked increase in the titratable acidity (TA) and total soluble solid (TSS) content of fruits. Application of biostimulants, especially SE, enhanced the weight of 20 berries, fruit yield, and TSS content, and decreased TA in fruits of DS vines. Although drought stress had a negative effect on the chlorophyll content of grapevine, this effect was alleviated by the application of biostimulants, especially SE. Moreover, drought stress made the accumulation of abscisic acid (ABA), proline, total phenol, and soluble carbohydrates, the level of hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as the activity of guaiacol peroxidase (GPX) and catalase (CAT) enzymes increased in leaves. Application of biostimulants, especially SE, further increased the accumulation of ABA, proline, total phenol, and soluble carbohydrates and the activity of the antioxidant enzymes, but reduced the level of MDA and H2O2 in DS vines. Under drought stress conditions, concentrations of N, P, and K increased, and concentrations of Fe and Zn decreased; however, DS grapevines treated with biostimulants and especially SE accumulated a higher level of these mineral nutrients than CON vines.
Conclusion
In sum, as evidenced by the study results, biostimulants have a high potential for promoting fruit yield and quality of grapevine in drought-prone regions.
Publisher
Springer Science and Business Media LLC
Subject
Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献