PET/MRI reveals ongoing metabolic activity in ACL grafts one year post-ACL reconstruction
-
Published:2020-06-01
Issue:1
Volume:7
Page:
-
ISSN:2197-1153
-
Container-title:Journal of Experimental Orthopaedics
-
language:en
-
Short-container-title:J EXP ORTOP
Author:
Korbin Seth, Salerno Michael, Achonu Justice U., Huang Mingqian, Vaska Paul, Pawlak Amanda, Komatsu David E.ORCID, Paci James M.
Abstract
Abstract
Purpose
To use serial PET/MRI imaging to radiographically evaluate the metabolic activity of the ACL graft over the first post-operative year.
Methods
Six patients undergoing primary ACL reconstruction were recruited in this prospective study in an inpatient university hospital. All patients underwent femoral and tibial suspensory cortical fixation with quadrupled semitendinosus autograft hamstring ACL reconstruction by an orthopaedic surgeon. Simultaneous 18F-FDG PET and MRI of both the operative and non-operative knee was performed at three, six, and 12 months post-operatively. Quantification of the mean standardized uptake value (SUV) within the whole-knee, as well as tibial tunnel, femoral tunnel, and intra-articular graft regions of interest (ROIs).
Results
PET whole-knee activity was increased at all time-points post-operatively compared to the control, non-operative knee. Activity decreased over time, yet considerable generalized activity remained 1 year post-operatively, with relative intensity 34% percent higher than control. When the operative knee was divided into three whole-regions, there was greater activity in the tibia at three than 12 months, the femur at six than 12 months, and in the tibia compared to the intra-articular region at 3 months. When they were separated into sub-regions, results demonstrated greater activity closer to the joint surface.
Conclusions
PET/MRI evaluation of ACL graft reconstructions demonstrates evolving biologic activity within the graft and both tunnels. Focal areas of increased activity within the tunnels may indicate of ligamento-osseous morphologic changes. These data suggest that graft incorporation continues well beyond 1 year post-operatively.
Level of evidence
Level IV.
Funder
Stony Brook University Department of Radiology
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine
Reference26 articles.
1. A. Magnussen R, Binzel K, Zhang J, Wei W, U. Knopp M, C. Flanigan D, E. Hewett T, C. Kaeding C, V. Knopp M (2017) ACL graft metabolic activity assessed by 18FDG PET–MRI. Knee 24(4):792–797. https://doi.org/10.1016/j.knee.2017.04.008 2. Binzel K, Kaeding C, Flanigan D, Magnussen R, Wei W, Knopp M, Zhang J, Knopp M (2015) Feasibility demonstration of dynamic FDG PET to assess ACL graft viability after reconstructive surgery. J Nucl Med 56(supplement 3):547 3. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, Verzijlbergen FJ, Barrington SF, Pike LC, Weber WA, Stroobants S, Delbeke D, Donohoe KJ, Holbrook S, Graham MM, Testanera G, Hoekstra OS, Zijlstra J, Visser E, Hoekstra CJ, Pruim J, Willemsen A, Arends B, Kotzerke J, Bockisch A, Beyer T, Chiti A, Krause BJ, European Association of Nuclear M (2015) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 42(2):328–354. https://doi.org/10.1007/s00259-014-2961-x 4. Claes S, Verdonk P, Forsyth R, Bellemans J (2011) The "ligamentization" process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature. Am J Sports Med 39(11):2476–2483. https://doi.org/10.1177/0363546511402662 5. de Langen AJ, Vincent A, Velasquez LM, van Tinteren H, Boellaard R, Shankar LK, Boers M, Smit EF, Stroobants S, Weber WA, Hoekstra OS (2012) Repeatability of 18F-FDG uptake measurements in tumors: a metaanalysis. J Nucl Med 53(5):701–708. https://doi.org/10.2967/jnumed.111.095299
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|