Abstract
Abstract
Background
Positron emission tomography (PET) in combination with magnetic resonance imaging (MRI) could allow inflammatory complications near total knee arthroplasty (TKA) to be studied early in their development. However, attenuation of the PET signal by the metal TKA implants imparts substantial error into measurements of tracer activity, and conventional MR-based attenuation correction (AC) methods have large signal voids in the vicinity of metal implants.
Purpose
To evaluate a segmentation-based AC approach to measure tracer uptake from PET/MRI scans near TKA implants.
Methods
A TKA implant (Triathlon, Stryker, Mahwah, USA) was implanted into a cadaver. Four vials were filled with [18F]fluorodeoxyglucose with known activity concentration (4.68 MBq total, 0.76 MBq/mL) and inserted into the knee. Images of the knee were acquired using a 3T PET/MRI system (Biograph mMR, Siemens Healthcare, Erlangen, Germany). Models of the implant components were registered to the MR data using rigid-body transformations and the other tissue classes were manually segmented. These segments were used to create the segmentation-based map and complete the AC. Percentage error of the resulting measured activities was calculated by comparing the measured and known amounts of activity in each vial.
Results
The original AC resulted in a percentage error of 64.1% from the known total activity. Errors in the individual vial activities ranged from 40.2 to 82.7%. Using the new segmentation-based AC, the percentage error of the total activity decreased to 3.55%. Errors in the individual vials were less than 15%.
Conclusions
The segmentation-based AC technique dramatically reduced the error in activity measurements that result from PET signal attenuation by the metal TKA implant. This approach may be useful to enhance the reliability of PET/MRI measurements for numerous applications.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Molecular Medicine,Biophysics,Computer Science (miscellaneous)
Reference31 articles.
1. Arabi H, Zaidi H (2020) Truncation compensation and metallic dental implant artefact reduction in PET/MRI attenuation correction using deep learning-based object completion. Phys Med Biol 65(19):195002
2. Arabi H, Zaidi H (2022) MRI-guided attenuation correction in torso PET/MRI: assessment of segmentation-, atlas-, and deep learning-based approaches in the presence of outliers. Magn Reson Med 87(2):686–701
3. Berker Y, Franke J, Salomon A, Palmowski M, Donker HCW, Temur Y, Mottaghy FM, Kuhl C, Izquierdo-Garcia D, Fayad ZA, Kiessling F, Schulz V (2012) MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/dixon MRI sequence. J Nucl Med 53(5):796–804
4. Burger IA, Wurnig MC, Becker AS, Kenkel D, Delso G, Veit-Haibach P, Boss A (2015) Hybrid PET/MRI: an algorithm to reduce metal artifacts from dental implants in dixon-based attenuation map generation using a MAVRIC sequence. J Nucl Med off Publ Soc Nucl Med. 56(1):93–97
5. Chen Y, An H (2017) Attenuation correction of PET/MR imaging. Magn Reson Imaging Clin N Am 25(2):245–255
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献