Flight rapidly modulates body temperature in freely behaving bats

Author:

Luo JinhongORCID,Greif Stefan,Ye Huan,Bumrungsri Sara,Eitan Ofri,Yovel Yossi

Abstract

Abstract Background Bats are remarkable in their dynamic control over body temperature, showing both hypothermia with torpor and hyperthermia during flight. Despite considerable research in understanding bats’ thermoregulation mechanisms, knowledge on the relationship between flight and body temperature in bats remains limited, possibly due to technological restraints. Results We used onboard dataloggers including a temperature sensor and an inertial sensor (accelerometers) and continuously recorded the flight behavior and skin temperature (Tsk) subcutaneously of a perch-hunting bat, Hipposideros armiger, both in the laboratory and in the field. We provide evidence that flight increases the body temperature of bats. The median of the maximum increase in the Tsk caused by flight bouts was 3.4 °C (between 1.9 and 5.3 °C for different individuals) in the laboratory. The maximum Tsk for the bats was narrowly centered around 40 °C (between 38.5 and 40.9 °C). Moreover, we found that the faster the Tsk rises, the greater the maximum increase in Tsk. Interestingly, bats can slow down the Tsk rises with intermittent fights, during which they perch after brief flight bouts to allow the body temperature to drop rapidly. Similar data were collected from field recordings in free-ranging bats. Conclusions We suggest that perch-hunting behavior observed in approximately 200 species of bats that results in intermittent flights may function as a thermoregulatory strategy, in addition to optimizing energy efficiency as demonstrated by previous studies.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3