Abstract
AbstractThe bat immune system features multiple unique properties such as dampened inflammatory responses and increased tissue protection, explaining their long lifespan and tolerance to viral infections. Here, we demonstrated that body temperature fluctuations corresponding to different physiological states in bats exert a large impact on their antibody repertoires. At elevated temperatures typical for flight, IgG from the bat species Myotis myotis and Nyctalus noctula show elevated antigen binding strength and diversity, recognizing both pathogen-derived antigens and autoantigens. The opposite is observed at temperatures reflecting inactive physiological states. IgG antibodies of human and other mammals, or antibodies of birds do not appear to behave in a similar way. Importantly, diversification of bat antibody specificities results in preferential recognition of damaged endothelial and epithelial cells, indicating an anti-inflammatory function. The temperature-sensitivity of bat antibodies is mediated by the variable regions of immunoglobulin molecules. Additionally, we uncover specific molecular features of bat IgG, such as low thermodynamic stability and implication of hydrophobic interactions in antigen binding as well as high prevalence of polyreactivity. Overall, our results extend the understanding of bat tolerance to disease and inflammation and highlight the link between metabolism and immunity.
Publisher
Springer Science and Business Media LLC
Reference73 articles.
1. Gorbunova, V., Seluanov, A. & Kennedy, B. K. The world goes bats: living longer and tolerating viruses. Cell Metab. 32, 31–43 (2020).
2. Smith, I. & Wang, L. F. Bats and their virome: an important source of emerging viruses capable of infecting humans. Curr. Opin. Virol. 3, 84–91 (2013).
3. Luis, A. D. et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc. Biol. Sci. 280, 20122753 (2013).
4. Chan, J. F., To, K. K., Tse, H., Jin, D. Y. & Yuen, K. Y. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol 21, 544–555 (2013).
5. Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).