Male and female syringeal muscles exhibit superfast shortening velocities in zebra finches

Author:

Gladman Nicholas W.1ORCID,Elemans Coen P. H.1ORCID

Affiliation:

1. University of Southern Denmark Vocal Neuromechanics Lab, Sound Communication and Behaviour Group, Department of Biology , , 5230 Odense M, Denmark

Abstract

ABSTRACT Vocalisations play a key role in the communication behaviour of many vertebrates. Vocal production requires extremely precise motor control, which is executed by superfast vocal muscles that can operate at cycle frequencies over 100 Hz and up to 250 Hz. The mechanical performance of these muscles has been quantified with isometric performance and the workloop technique, but owing to methodological limitations we lack a key muscle property characterising muscle performance, the force–velocity relationship. Here, we quantified the force–velocity relationship in zebra finch superfast syringeal muscles using the isovelocity technique and tested whether the maximal shortening velocity is different between males and females. We show that syringeal muscles exhibit high maximal shortening velocities of 25L0 s−1 at 30°C. Using Q10-based extrapolation, we estimate they can reach 37–42L0 s−1 on average at body temperature, exceeding other vocal and non-avian skeletal muscles. The increased speed does not adequately compensate for reduced force, which results in low power output. This further highlights the importance of high-frequency operation in these muscles. Furthermore, we show that isometric properties positively correlate with maximal shortening velocities. Although male and female muscles differ in isometric force development rates, maximal shortening velocity is not sex dependent. We also show that cyclical methods to measure force–length properties used in laryngeal studies give the same result as conventional stepwise methodologies, suggesting either approach is appropriate. We argue that vocal behaviour may be affected by the high thermal dependence of superfast vocal muscle performance.

Funder

Novo Nordisk Fonden

Syddansk Universitet

Publisher

The Company of Biologists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3