Author:
Kühnel Stefan,Schols Henk A,Gruppen Harry
Abstract
Abstract
Background
Biomass use for the production of bioethanol or platform chemicals requires efficient breakdown of biomass to fermentable monosaccharides. Lignocellulosic feedstocks often require physicochemical pretreatment before enzymatic hydrolysis can begin. The optimal pretreatment can be different for different feedstocks, and should not lead to biomass destruction or formation of toxic products.
Methods
We examined the influence of six mild sulfuric acid or water pretreatments at different temperatures on the enzymatic degradability of sugar-beet pulp (SBP).
Results
We found that optimal pretreatment at 140°C of 15 minutes in water was able to solubilize 60% w/w of the total carbohydrates present, mainly pectins. More severe treatments led to the destruction of the solubilized sugars, and the subsequent production of the sugar-degradation products furfural, hydroxymethylfurfural, acetic acid and formic acid. The pretreated samples were successfully degraded enzymatically with an experimental cellulase preparation.
Conclusions
In this study, we found that pretreatment of SBP greatly facilitated the subsequent enzymatic degradation within economically feasible time ranges and enzyme levels. In addition, pretreatment of SBP can be useful to fractionate functional ingredients such as arabinans and pectins from cellulose. We found that the optimal combined severity factor to enhance the enzymatic degradation of SBP was between log R'0 = -2.0 and log R'0 = -1.5. The optimal pretreatment and enzyme treatment solubilized up to 80% of all sugars present in the SBP, including ≥90% of the cellulose.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,General Energy,Renewable Energy, Sustainability and the Environment,Applied Microbiology and Biotechnology,Biotechnology
Reference47 articles.
1. McCready RM: Polysaccharides of sugar beet pulp. A review of their chemistry. J Am Soc Sugar Beet 1966, 14: 260-270. 10.5274/jsbr.14.3.260
2. Kelly P: Sugar beet pulp - A review. Anim Feed Sci Tech 1983, 8: 1-18. 10.1016/0377-8401(83)90038-X
3. Voragen AGJ, Oosterveld A, Schols HA, Beldman G: Pectic substances from sugar beet pulp: extraction and fractionation, structural features, functional properties and enzymic modification. In Transformation and modification of carbohydrates, Proc of 4th Int Workshop on carbohydrates as organic raw materials. Vienna, Austria; 1997:29.
4. Bettiga M, Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF: Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb Cell Fact 2009., 8:
5. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technol 2010, 101: 4851-4861. 10.1016/j.biortech.2009.11.093
Cited by
93 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献