Preparation of recombinant Kluyveromyces lactis agents for simultaneous degradation of two mycotoxins

Author:

Xia YuORCID,Qiu Yangyu,Wu Zifeng,Cheng Qianqian,Hu Xiuyu,Cui Xiaobing,Wang Zhouping

Abstract

AbstractAflatoxin B1 (AFB1) and zearalenone (ZEN) are widely distributed in corns, peanuts, and other cereals, causing serious threat to food safety and human health. As shown by our previous studies, the recombinant yeast strain Kluyveromyces lactis GG799(pKLAC1-ZPF1) had the ability of degrading AFB1 and ZEN simultaneously. In this work, the agent preparation process was optimized for K. lactis GG799(pKLAC1-ZPF1), and the storage conditions of the prepared yeast agents were investigated, for obtaining the products with high storage activities and potent mycotoxin degradation efficiency. The optimal preparation process was as follows: centrifugation at 6000 rpm for 15 min for collection of the yeast cells, spray drying with the ratio of protective compounds to yeast cells at 3:1 (w/w) and then stored at − 20 °C. Simultaneous degradation tests of AFB1 and ZEN were performed using the supernatants of reactivated yeast agents after three months of storage, and the degradation ratios for AFB1 and ZEN in reaction system 1 (70.0 mmol/L malonic buffer, pH 4.5, with 1.0 mmol/L MnSO4, 0.1 mmol/L H2O2, 5.0 μg/mL AFB1 and ZEN, respectively) were 48.2 ± 3.2% and 34.8 ± 2.8%, while that for ZEN in reaction system 2 (50.0 mmol/L Tris–HCl, pH 7.5, with 5.0 μg/mL AFB1 and ZEN, respectively) was 30.1 ± 2.7%. Besides, the supernatants of reactivated yeast agents degraded more than 80% of AFB1 and 55% of ZEN in contaminated peanuts after twice treatments. Results of this work suggested that the optimized process for K. lactis GG799(pKLAC1-ZPF1) was with high value for industrial applications.

Funder

Jiangsu Agricultural Science and Technology Innovation Fund

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3