Author:
Mellidou Ifigeneia,Keulemans Johan,Kanellis Angelos K,Davey Mark W
Abstract
Abstract
Background
To gain insight into the regulation of fruit ascorbic acid (AsA) pool in tomatoes, a combination of metabolite analyses, non-labelled and radiolabelled substrate feeding experiments, enzyme activity measurements and gene expression studies were carried out in fruits of the ‘low-’ and ‘high-AsA’ tomato cultivars ‘Ailsa Craig’ and ‘Santorini’ respectively.
Results
The two cultivars exhibited different profiles of total AsA (totAsA, AsA + dehydroascorbate) and AsA accumulation during ripening, but both displayed a characteristic peak in concentrations at the breaker stage. Substrate feeding experiments demonstrated that the L-galactose pathway is the main AsA biosynthetic route in tomato fruits, but that substrates from alternative pathways can increase the AsA pool at specific developmental stages. In addition, we show that young fruits display a higher AsA biosynthetic capacity than mature ones, but this does not lead to higher AsA concentrations due to either enhanced rates of AsA breakdown (‘Ailsa Craig’) or decreased rates of AsA recycling (‘Santorini’), depending on the cultivar. In the later stages of ripening, differences in fruit totAsA-AsA concentrations of the two cultivars can be explained by differences in the rate of AsA recycling activities. Analysis of the expression of AsA metabolic genes showed that only the expression of one orthologue of GDP-L-galactose phosphorylase (SlGGP1), and of two monodehydroascorbate reductases (SlMDHAR1 and SlMDHAR3) correlated with the changes in fruit totAsA-AsA concentrations during fruit ripening in ‘Ailsa Craig’, and that only the expression of SlGGP1 was linked to the high AsA concentrations found in red ripe ‘Santorini’ fruits.
Conclusions
Results indicate that ‘Ailsa Craig’ and ‘Santorini’ use complementary mechanisms to maintain the fruit AsA pool. In the low-AsA cultivar (‘Ailsa Craig’), alternative routes of AsA biosynthesis may supplement biosynthesis via L-galactose, while in the high-AsA cultivar (‘Santorini’), enhanced AsA recycling activities appear to be responsible for AsA accumulation in the later stages of ripening. Gene expression studies indicate that expression of SlGGP1 and two orthologues of SlMDHAR are closely correlated with totAsA-AsA concentrations during ripening and are potentially good candidates for marker development for breeding and selection.
Publisher
Springer Science and Business Media LLC
Reference52 articles.
1. Davey MW, Van Montagu M, Inze D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D, Fletcher J: Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric. 2000, 80: 825-860. 10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.0.CO;2-6.
2. Smirnoff N, Conklin PL, Loewus FA: Biosynthesis of ascorbic acid in plants: A renaissance. Annual Rev Plant Physiol Plant Mol Biol. 2001, 52: 437-467. 10.1146/annurev.arplant.52.1.437.
3. Franck C, Baetens M, Lammertyn J, Verboven P: Davey MW. Nicolai BM: Ascorbic acid concentration in cv. conference pears during fruit development and postharvest storage. J Agric Food Chem. 2003, 51: 4757-4763.
4. Davey MW, Auwerkerken A, Keulemans J: Relationship of apple vitamin C and antioxidant contents to harvest date and postharvest pathogen infection. J Sci Food Agric. 2007, 87: 802-813. 10.1002/jsfa.2777.
5. Bulley S, Wright M, Rommens C, Yan H, Rassam M, Lin-Wang K, Andre C, Brewster D, Karunairetnam S, Allan AC, et al: Enhancing ascorbate in fruits and tubers through over-expression of the l-galactose pathway gene GDP-l-galactose phosphorylase. Plant Biotech J. 2012, 10: 390-397. 10.1111/j.1467-7652.2011.00668.x.
Cited by
108 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献