Anisotropy of impact ionization in WSe2 field effect transistors

Author:

Kang Taeho,Choi Haeju,Li Jinshu,Kang Chanwoo,Hwang Euyheon,Lee SungjooORCID

Abstract

AbstractCarrier multiplication via impact ionization in two-dimensional (2D) layered materials is a very promising process for manufacturing high-performance devices because the multiplication has been reported to overcome thermodynamic conversion limits. Given that 2D layered materials exhibit highly anisotropic transport properties, understanding the directionally-dependent multiplication process is necessary for device applications. In this study, the anisotropy of carrier multiplication in the 2D layered material, WSe2, is investigated. To study the multiplication anisotropy of WSe2, both lateral and vertical WSe2 field effect transistors (FETs) are fabricated and their electrical and transport properties are investigated. We find that the multiplication anisotropy is much bigger than the transport anisotropy, i.e., the critical electric field (ECR) for impact ionization of vertical WSe2 FETs is approximately ten times higher than that of lateral FETs. To understand the experimental results we calculate the average energy of the carriers in the proposed devices under strong electric fields by using the Monte Carlo simulation method. The calculated average energy is strongly dependent on the transport directions and we find that the critical electric field for impact ionization in vertical devices is approximately one order of magnitude larger than that of the lateral devices, consistent with experimental results. Our findings provide new strategies for the future development of low-power electric and photoelectric devices. Graphical Abstract

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3