Developing non-invasive 3D quantificational imaging for intelligent coconut analysis system with X-ray

Author:

Zhang Yu,Liu Qianfan,Chen Jing,Sun Chengxu,Lin Shenghuang,Cao Hongxing,Xiao Zhaolin,Huang Mengxing

Abstract

Abstract Background As one of the largest drupes in the world, the coconut has a special multilayered structure and a seed development process that is not yet fully understood. On the one hand, the special structure of the coconut pericarp prevents the development of external damage to the coconut fruit, and on the other hand, the thickness of the coconut shell makes it difficult to observe the development of bacteria inside it. In addition, coconut takes about 1 year to progress from pollination to maturity. During the long development process, coconut development is vulnerable to natural disasters, cold waves, typhoons, etc. Therefore, nondestructive observation of the internal development process remains a highly important and challenging task. In this study, We proposed an intelligent system for building a three-dimensional (3D) quantitative imaging model of coconut fruit using Computed Tomography (CT) images. Cross-sectional images of coconut fruit were obtained by spiral CT scanning. Then a point cloud model was built by extracting 3D coordinate data and RGB values. The point cloud model was denoised using the cluster denoising method. Finally, a 3D quantitative model of a coconut fruit was established. Results The innovations of this work are as follows. 1) Using CT scans, we obtained a total of 37,950 non-destructive internal growth change maps of various types of coconuts to establish a coconut data set called “CCID”, which provides powerful graphical data support for coconut research. 2) Based on this data set, we built a coconut intelligence system. By inputting a batch of coconut images into a 3D point cloud map, the internal structure information can be ascertained, the entire contour can be drawn and rendered according to need, and the long diameter, short diameter and volume of the required structure can be obtained. We maintained quantitative observation on a batch of local Hainan coconuts for more than 3 months. With 40 coconuts as test cases, the high accuracy of the model generated by the system is proven. The system has a good application value and broad popularization prospects in the cultivation and optimization of coconut fruit. Conclusion The evaluation results show that the 3D quantitative imaging model has high accuracy in capturing the internal development process of coconut fruits. The system can effectively assist growers in internal developmental observations and in structural data acquisition from coconut, thus providing decision-making support for improving the cultivation conditions of coconuts.

Funder

Major Science and Technology Project of Haikou

the Key R&D Project of Hainan province

the National Natural Science Foundation of China

the National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3