Author:
Liu Qianfan,Zhang Yu,Chen Jing,Sun Chengxu,Huang Mengxing,Che Mingwei,Li Chun,Lin Shenghuang
Abstract
Due to the unique structure of coconuts, their cultivation heavily relies on manual experience, making it difficult to accurately and timely observe their internal characteristics. This limitation severely hinders the optimization of coconut breeding. To address this issue, we propose a new model based on the improved architecture of Deeplab V3+. We replace the original ASPP(Atrous Spatial Pyramid Pooling) structure with a dense atrous spatial pyramid pooling module and introduce CBAM(Convolutional Block Attention Module). This approach resolves the issue of information loss due to sparse sampling and effectively captures global features. Additionally, we embed a RRM(residual refinement module) after the output level of the decoder to optimize boundary information between organs. Multiple model comparisons and ablation experiments are conducted, demonstrating that the improved segmentation algorithm achieves higher accuracy when dealing with diverse coconut organ CT(Computed Tomography) images. Our work provides a new solution for accurately segmenting internal coconut organs, which facilitates scientific decision-making for coconut researchers at different stages of growth.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献