Inter domain interactions influence the substrate affinity and hydrolysis product specificity of xylanase from Streptomyces chartreusis L1105

Author:

Xiong KeORCID,Yan Zi xiang,Liu Jia yun,Pei Peng gang,Deng Lei,Gao Le,Sun Bao guo

Abstract

Abstract Purpose This study investigated the influence of inter-domain interactions on the substrate affinity and hydrolysis product specificity of xylanase. Methods Genes encoding a GH10 endo-xylanase from Streptomyces chartreusis L1105 xynA and its truncated derivative were cloned and expressed in Escherichia coli. The catalytic activities of the enzyme (xynA) and the derivative xynADCBM, lacking the carbohydrate binding module (CBM), were assessed to evaluate the role of CBM in xynA. Results Recombinant xynA (44 kDa) was found to be optimally active on beechwood xylan at 65 °C with pH 7.7, while xynADCBM (34 kDa) exhibited optimal activity at 65 °C with pH 7.2. Additionally, xynA and xynADCBM were found to be highly thermostable at 40–60 °C, each retaining 80% of their original activity after 30 min. The xynADCBM without the CBM domain was highly efficient at hydrolyzing xylan to produce xylobiose (over 67%), which may be because the CBM domain facilitates substrate binding with xylanase. Meanwhile, the xylan hydrolysis efficiency of xynADCBM was higher than that of xynA. Conclusion These findings showed that the CBM domain with non-catalytic activity has no significant effect on the characteristics of the enzyme at optimum pH and pH tolerance. It has also been suggested that the derivative xynADCBM without CBM components can promote hydrolysis of xylan to yield xylooligosaccharides, which has great potential economic benefits.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3