Stochastic Watershed Model Ensembles for Long‐Range Planning: Verification and Validation

Author:

Shabestanipour Ghazal1,Brodeur Zachary2ORCID,Farmer William H.3ORCID,Steinschneider Scott2ORCID,Vogel Richard M.1,Lamontagne Jonathan R.1ORCID

Affiliation:

1. Department of Civil & Environmental Engineering Tufts University Medford MA USA

2. Department of Biological & Environmental Engineering Cornell University Ithaca NY USA

3. Water Resources Mission Area U.S. Geological Survey Denver CO USA

Abstract

AbstractDeterministic watershed models (DWMs) are used in nearly all hydrologic planning, design, and management activities, yet they cannot generate streamflow ensembles needed for hydrologic risk management (HRM). The stochastic component of DWMs is often ignored in practice, leading to a systematic bias in extreme events. Since traditional stochastic streamflow models used in HRM struggle to account for anthropogenic change, there is a need to convert DWMs into stochastic watershed models (SWMs) to generate ensembles for use in HRM. A DWM can be converted to an SWM using a post‐processing (pp) approach to add error to the DWM predictions. Many pp methods advanced in the area of flood forecasting are useful in HRM and for correcting extreme event biases. Selecting a suitable error model for pp is challenging due to nonnormality, skewness, heteroscedasticity, and autocorrelation. We develop a parsimonious pp method based on an autoregressive (AR) model of the logarithm of the ratio of the observations and simulations, which leads to AR model residuals that are approximately symmetric and independent. We document the value of pp for improving flood and low flow frequency analysis and we reintroduce the concepts of verification and validation of stochastic streamflow ensembles to ensure that the SWM can reproduce both statistics it was and was not designed to reproduce, respectively. These concepts are illustrated on a Massachusetts basin using the USGS Precipitation Runoff Modeling System, with an additional analysis indicating the approach may be applicable to 1,225 other sites across the United States.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3