Characterizing the multisectoral impacts of future global hydrologic variability

Author:

Birnbaum AbigailORCID,Shabestanipour GhazalORCID,Zhao MengqiORCID,Snyder AbigailORCID,Wild ThomasORCID,Lamontagne JonathanORCID

Abstract

Abstract There is significant uncertainty in how global water supply will evolve in the future, due to uncertain climate, socioeconomic, and land use change drivers and variability of hydrologic processes. It is critical to characterize the potential impacts of uncertainty in future water supply given its importance for food and energy production. In this work, we introduce a framework that integrates stochastic hydrology and human-environmental systems to characterize uncertainty in future water supply and its multisector impacts. We develop a global stochastic watershed model and demonstrate that this model can generate a large ensemble of realizations of basin-scale runoff with global coverage that preserves the mean, variance, and spatial correlation of a historical benchmark. We couple this model with a well-known human-environmental systems model to explore the impacts of runoff variability on the water and agricultural sectors across spatial scales. We find that the impacts of future hydrologic variability vary across sectors and regions. Impacts are felt most strongly in the water and agricultural sectors for basins that are expected to have unsustainable water use in the future, such as the Indus River basin. For this basin, we find that the variability in future irrigation water withdrawals and irrigated cropland increase over time due to uncertainty in renewable water supply. We also use the Indus basin to show how our stochastic ensemble can be leveraged to explore the global multisector consequences of local extreme runoff conditions. This work introduces a novel technique to explore the propagation of future hydrologic variability across human and natural systems and spatial scales.

Funder

U.S. Department of Energy, Office of Science, MultiSector Dynamics, Earth and Environmental System Modeling Program

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3