Affiliation:
1. Department of Civil and Environmental Engineering University of Illinois at Urbana‐Champaign (UIUC) Urbana IL USA
Abstract
AbstractWe assess the overall watershed system representation via fully coupling a generic reservoir operation model with a conceptual rainfall‐runoff model. The performance of the coupled model is evaluated comprehensively by examining watershed outflow simulations, model parameter values, and a key internal flux of the watershed model (here reservoir inflow). Five published generic reservoir operation models are coupled with a watershed rainfall‐runoff model, and results are compared across the coupled models and one additional model called ResIgnore that ignores reservoir operation. Traditional loosely coupled watershed hydrologic models (where calibrated inflow is routed through reservoir operation models) are used as baselines to examine the differences in simulation performance and parameterization obtained from the fully coupled models. We find that fully coupling the Generic Data‐Driven Reservoir Operation Model (GDROM) and the Dynamically Zoned Target Release (DZTR) reservoir operation models with the rainfall‐runoff model obtains robust simulations of watershed outflow with realistic parameterization, suggesting that they can be reliably integrated into large‐scale hydrological models for simulating streamflow in heavily dammed watersheds. Our results also show that compared to ResIgnore, the fully coupled watershed models more accurately simulate the entire distribution of watershed outflow, obtain more realistic values of model parameters, and simulate reservoir inflow with higher accuracy. Finally, we note that the prediction intervals of watershed outflow obtained from the GDROM‐ and DZTR‐based fully coupled models consistently envelop observed watershed outflow across the study watersheds, indicating that GDROM and DZTR can be suitable reservoir components of large‐scale hydrology models.
Funder
University of Illinois at Urbana-Champaign
National Oceanic and Atmospheric Administration
University of Alabama
Publisher
American Geophysical Union (AGU)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献