A Hybrid, Non‐Stationary Stochastic Watershed Model (SWM) for Uncertain Hydrologic Simulations Under Climate Change

Author:

Brodeur Zach1ORCID,Wi Sungwook1ORCID,Shabestanipour Ghazal2,Lamontagne Jon2ORCID,Steinschneider Scott1ORCID

Affiliation:

1. Department of Biological and Environmental Engineering Cornell University Ithaca NY USA

2. Department of Civil and Environmental Engineering Tufts University Medford MA USA

Abstract

AbstractStochastic Watershed Models (SWMs) are emerging tools in hydrologic modeling used to propagate uncertainty into model predictions by adding samples of model error to deterministic simulations. One of the most promising uses of SWMs is uncertainty propagation for hydrologic simulations under climate change. However, a core challenge is that the historical predictive uncertainty may not correctly characterize the error distribution under future climate. For example, the frequency of physical processes (e.g., snow accumulation and melt) may change under climate change, and so too may the frequency of errors associated with those processes. In this work, we explore for the first time non‐stationarity in hydrologic model errors under climate change in an idealized experimental design. We fit one hydrologic model to historical observations, and then fit a second model to the simulations of the first, treating the first model as the true hydrologic system. We then force both models with climate change impacted meteorology and investigate changes to the error distribution between the models. We develop a hybrid machine learning method that maps model state variables to predictive errors, allowing for non‐stationary error distributions based on changes in the frequency of model states. We find that this procedure provides an internally consistent methodology to overcome stationarity assumptions in error modeling and offers an important advance for implementing SWMs under climate change. We test this method on three hydrologically distinct watersheds in California (Feather River, Sacramento River, Calaveras River), finding that the hybrid model performs best in larger and less flashy basins.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3