Callisto's Atmosphere: The Oxygen Enigma

Author:

Carberry Mogan Shane R.1ORCID,Liuzzo Lucas1ORCID,Poppe Andrew R.1ORCID,Simon Sven2ORCID,Szalay Jamey R.3ORCID,Tucker Orenthal J.4ORCID,Johnson Robert E.56ORCID

Affiliation:

1. University of California, Berkeley Berkeley CA USA

2. Georgia Institute of Technology Atlanta GA USA

3. Princeton University Princeton NJ USA

4. NASA Goddard Space Flight Center Greenbelt MD USA

5. University of Virginia Charlottesville VA USA

6. New York University New York NY USA

Abstract

AbstractObservations of Callisto's atmosphere have indicated an O2 component should exist, but the evolution from its initial source to its inferred steady‐state abundance is not well understood. Herein we constrain the production of O2 via radiolysis within Callisto's exposed ice patches and determine the corresponding O2 column density. To do so, for the first time we simulate the thermal and energetic components of the Jovian magnetospheric plasma irradiating Callisto's atmosphere and estimate energy deposited therein by the impinging charged particles along their trajectories to the surface. We then calculate O2 source fluxes corresponding to the energy of the impacting plasma fluxes, which is coupled with estimated atmospheric lifetimes to determine the steady‐state abundance of O2. Our results suggest that production of O2 via radiolysis within the exposed ice on Callisto's surface does not produce a sufficiently dense atmosphere relative to the column densities inferred from observations by about 2–3 orders of magnitude. To resolve this discrepancy between estimated and observed abundances, we provide the first estimates for other potential sources of atmospheric O2. We also make similar estimates for the production of H2 in Callisto's atmosphere relative to constraints provided in the literature, and the conclusion is the same: a sufficiently dense atmosphere is not produced. Thus, we have shown that a better understanding of the production and fate of radiolytic products in Callisto's regolith is required in order to place firmer constraints on the generation mechanisms of its atmosphere in preparation for future observations.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Reference102 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3