Energy and Temperature Dependencies for Electron-induced Sputtering from H2O Ice: Implications for the Icy Galilean Moons

Author:

Carmack Rebecca A.ORCID,Loeffler Mark J.ORCID

Abstract

Abstract To better assess the role that electrons play in exosphere production on icy bodies, we measured the total and O2 sputtering yields from H2O ice for electrons with energies between 0.75 and 10 keV and temperatures between 15 and 124.5 K. We find that both total and O2 yields increase with decreasing energy over our studied range, that they increase rapidly at temperatures above 60 K, and that the relative amount of H2O in the sputtered flux decreases quickly with increasing energy. Combining our data with other electron data in the literature, we show that the accuracy of a widely used sputtering model can be improved significantly for electrons by adjusting some of the intrinsic parameter values. Applying our results to Europa, we estimate that the contribution of electrons to the production of the O2 exosphere is equal to the combined contribution of all ions. In contrast, sputtering of O2 from Ganymede and Callisto appears to be dominated by irradiating ions, though electrons still likely contribute a nonnegligible amount. While our estimates could be further refined by examining the importance of spatial variations in electron flux, we conclude that, at the very least, electrons seem to be important for exosphere production on icy surfaces and should be included in future modeling efforts.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3