Surface‐Plasma Interactions at Europa in Draped Magnetospheric Fields: The Contribution of Energetic Electrons to Energy Deposition and Sputtering

Author:

Addison Peter1ORCID,Liuzzo Lucas2ORCID,Simon Sven13ORCID

Affiliation:

1. School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta GA USA

2. Space Sciences Laboratory University of California Berkeley CA USA

3. School of Physics Georgia Institute of Technology Atlanta GA USA

Abstract

AbstractWe calculate the time‐varying spatial distribution of energetic magnetospheric electron influx onto Europa's surface by combining a hybrid model of the moon's draped electromagnetic environment with a relativistic particle tracer. We generate maps of the energetic electron influx patterns at four distinct locations of Europa relative to the center of the Jovian magnetospheric current sheet. For a full synodic rotation of Jupiter, these results are applied to constrain the averaged number and energy influx patterns as well as the O2 sputtering rates associated with energetic electron precipitation. We also determine the relative contributions of magnetospheric ions and electrons to surface erosion and exospheric genesis at Europa. Our major results are: (a) Except for a small region near Europa's downstream apex, the moon's entire surface is exposed to heavy irradiation by magnetospheric electrons. (b) The spatial distribution of energetic electron influx onto Europa's surface is only slightly modified by field line draping and the induced magnetic field from the moon's subsurface ocean. (c) The contributions of magnetospheric electron and ion impacts to energy deposition onto Europa's surface are of the same order of magnitude. (d) Within uncertainties, impinging magnetospheric electrons and ions make similar contributions to O2 sputtering from Europa's surface. (e) The spatial distribution of electron energy influx and the observed concentrations of sulfuric acid (H2SO4) are only weakly correlated, suggesting that energy deposition by magnetospheric electron impacts is not a necessary agent for H2SO4 production within Europa's surface.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3