A One‐Dimensional Model of Atmospheric Sputtering at Io Driven by S++ and O+

Author:

Huang Xu1ORCID,Gu Hao1ORCID,Ni Yangxin1,Zhao JinJin1,Cui Jun12ORCID

Affiliation:

1. Planetary Environmental and Astrobiological Research Laboratory (PEARL) School of Atmospheric Sciences, Sun Yat‐Sen University Zhuhai China

2. Center for Excellence in Comparative Planetology Chinese Academy of Sciences Hefei China

Abstract

AbstractIo, the closest of Jupiter's four Galilean moons, suffers from intense ion bombardment from Jupiter's magnetosphere. The constant atmospheric erosion by energetic ion precipitation, referred to atmospheric sputtering, serves as an important mechanism of Io's atmospheric escape. This study is devoted to a state‐of‐the‐art study of atmospheric sputtering at Io, with the aid of constantly accumulated understandings of Io's space environment and atmospheric photochemistry, as well as the updated laboratory measurements. A Monte Carlo model is constructed to track the energy degradation of incident S++ and O+ and atmospheric recoils from which the sputtering yields of different atmospheric species are determined. Our calculations suggest a total escape rate of 3 × 1029 atom s−1 on Io, and SO2 is the dominant sputtered species. Further investigations reveal that S++ is the most efficient species for atmospheric sputtering on Io, and sputtering yields increase substantially with increasing incident ion mass, energy, and incidence angle. The model sensitivity to different influence factors is also discussed, including scattering angle distribution, atmospheric column density, proton precipitation, inelastic process, and surface sputtering, of which the former two dominate.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Institute of Geology and Geophysics, Chinese Academy of Sciences

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3