A Dimensionless Parameter for Predicting Convective Self‐Aggregation Onset in a Stochastic Reaction‐Diffusion Model of Tropical Radiative‐Convective Equilibrium

Author:

Biagioli Giovanni12ORCID,Tompkins Adrian Mark2ORCID

Affiliation:

1. University of Trieste Trieste Italy

2. Abdus Salam International Center for Theoretical Physics (ICTP) Trieste Italy

Abstract

AbstractWe introduce a minimal stochastic lattice model for the column relative humidity (R) in the tropics, which incorporates convective moistening, horizontal transport and subsidence drying. The probability of convection occurring in a location increases with R, based on Tropical Rainfall Measuring Mission observations, providing a positive feedback that could lead to aggregation. We show that the simple model reproduces many aspects of full‐physics cloud resolving model experiments. Depending on model parameter settings and domain size and resolution choices, it can produce both random and aggregated equilibrium states. Clustering occurs more readily with larger domains and coarser resolutions, in agreement with full‐physics models. Using dimensional arguments and fits from empirical data, we derive a dimensionless parameter which we call the aggregation number, Nag, that predicts whether a specific model and experiment setup will result in an aggregated or random state. The parameter includes the moistening feedback strength, the horizontal moisture transport efficiency, the subsidence timescale, the domain size and spatial resolution. Using large ensembles of experiments, we show that the transition between random and aggregated states occurs at a critical value of Nag. We argue that Nag could help to understand the differences in aggregation states between full‐physics, cloud resolving models, which show little consensus about the robustness of self‐organized patterns, whose emergence appears to be sensitive to the model setup, physics and parameterizations.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3