Explaining Scales and Statistics of Tropical Precipitation Clusters with a Stochastic Model

Author:

Ahmed Fiaz1ORCID,Neelin J. David1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Abstract

Abstract Precipitation clusters are contiguous raining regions characterized by a precipitation threshold, size, and the total rainfall contained within—termed the cluster power. Tropical observations suggest that the probability distributions of both cluster size and power contain a power-law range (with slope ~ −1.5) bounded by a large-event “cutoff.” Events with values beyond the cutoff signify large, powerful clusters and represent extreme events. A two-dimensional stochastic model is introduced to reproduce the observed cluster distributions, including the slope and the cutoff. The model is equipped with coupled moisture and weak temperature gradient (WTG) energy equations, empirically motivated precipitation parameterization, temporally persistent noise, and lateral mixing processes, all of which collectively shape the model cluster distributions. Moisture–radiative feedbacks aid clustering, but excessively strong feedbacks push the model into a self-aggregating regime. The power-law slope is stable in a realistic parameter range. The cutoff is sensitive to multiple model parameters including the stochastic forcing amplitude, the threshold moisture value that triggers precipitation, and the lateral mixing efficiency. Among the candidates for simple analogs of precipitation clustering, percolation models are ruled out as unsatisfactory, but the stochastic branching process proves useful in formulating a neighbor probability metric. This metric measures the average number of nearest neighbors that a precipitating entity can spawn per time interval and captures the cutoff parameter sensitivity for both cluster size and power. The results here suggest that the clustering tendency and the horizontal scale limiting large tropical precipitating systems arise from aggregate effects of multiple moist processes, which are encapsulated in the neighbor probability metric.

Funder

Division of Atmospheric and Geospace Sciences

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3