An object-based model for convective cold pool dynamics

Author:

Böing S.J.

Abstract

AbstractA simple model of the organization of atmospheric moist convection by cold outflows is presented. The model consists of two layers: a lower layer where instability gradually builds up, and an upper layer where instability is rapidly released. Its formulation is inspired by Abelian sandpile models: instability and convection are both represented in terms of particles that are coupled to a lattice grid. An excess of particles in the lower layer triggers a particle release into the upper (cloud) layer. Particles in the upper layer also induce particle movement in the lower layer: this reverse coupling represents the effect of precipitation and the associated cold outflows.The model shows two behavioral regimes. Activity is scattered when the reverse coupling is weak, but when it is strong, convection forms cellular patterns. Though this model does not contain a detailed representation of physical processes in convection, it captures some key dynamical features of precipitating convection seen in satellite observations and LES studies. These include the formation of open cells, temporal oscillations in convective intensity, hysteresis, and the effect of precipitation on the scale of convection. We argue that an object-based representation of convection may be able to capture properties of convective organization that are missing in traditional parameterizations.

Publisher

Portico

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characteristics of Station‐Derived Convective Cold Pools Over Equatorial Africa;Geophysical Research Letters;2024-03-14

2. Detecting Cold Pool Family Trees in Convection Resolving Simulations;Journal of Advances in Modeling Earth Systems;2024-01

3. U‐Net Segmentation for the Detection of Convective Cold Pools From Cloud and Rainfall Fields;Journal of Geophysical Research: Atmospheres;2023-12-29

4. Mechanisms for the Self‐Organization of Tropical Deep Convection;Clouds and Their Climatic Impacts;2023-12-15

5. On the Sensitivity of Convective Cold Pools to Mesh Resolution;Journal of Advances in Modeling Earth Systems;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3