Affiliation:
1. Niels Bohr Institute University of Copenhagen Copenhagen Denmark
2. Complexity and Climate Leibniz Center for Tropical Marine Research Bremen Germany
3. Constructor University Bremen Germany
Abstract
AbstractIt is well recognized that triggering of convective cells through cold pools (CPs) is key to the organization of convection. Yet, numerous studies have found that both the characterization and parameterization of CP effects in numerical models is cumbersome—in part due to the lack of numerical convergence with respect to the horizontal mesh resolution, Δx, obtained in typical cloud‐resolving simulators. Within a comprehensive numerical convergence study we systematically increase the horizontal resolution in a set of idealized large‐eddy simulations. Our analysis captures key CP processes, namely free propagation, frontal collision and merging of gust fronts. We characterize the numerical convergence of tropospheric moistening rates, gust front vortical strength and propagation speed, and the amplitude of the lobe‐and‐cleft instability. The understanding gained from this analysis may help develop robust subgrid models for CP dynamics.
Funder
Villum Fonden
HORIZON EUROPE European Research Council
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献