Convective Cold Pools in Long-Term Boundary Layer Mast Observations

Author:

Kirsch Bastian1,Ament Felix1,Hohenegger Cathy2

Affiliation:

1. a Meteorological Institute, University of Hamburg, Hamburg, Germany

2. b Max Planck Institute for Meteorology, Hamburg, Germany

Abstract

AbstractCold pools are mesoscale features that are key for understanding the organization of convection, but are insufficiently captured in conventional observations. This study conducts a statistical characterization of cold-pool passages observed at a 280-m-high boundary layer mast in Hamburg (Germany) and discusses factors controlling their signal strength. During 14 summer seasons 489 cold-pool events are identified from rapid temperature drops below −2 K associated with rainfall. The cold-pool activity exhibits distinct annual and diurnal cycles peaking in July and midafternoon, respectively. The median temperature perturbation is −3.3 K at 2-m height and weakens above. Also the increase in hydrostatic air pressure and specific humidity is largest near the surface. Extrapolation of the vertically weakening pressure signal suggests a characteristic cold-pool depth of about 750 m. Disturbances in the horizontal and vertical wind speed components document a lifting-induced circulation of air masses prior to the approaching cold-pool front. According to a correlation analysis, the near-surface temperature perturbation is more strongly controlled by the pre-event saturation deficit (r = −0.71) than by the event-accumulated rainfall amount (r = −0.35). Simulating the observed temperature drops as idealized wet-bulb processes suggests that evaporative cooling alone explains 64% of the variability in cold-pool strength. This number increases to 92% for cases that are not affected by advection of midtropospheric low-Θe air masses under convective downdrafts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3