Numerical Diffusion and Turbulent Mixing in Convective Self‐Aggregation

Author:

Silvestri L.12ORCID,Saraceni M.1ORCID,Bongioannini Cerlini P.3ORCID

Affiliation:

1. Department of Civil and Environmental Engineering (DICA)—Centro di Ricerca sul Clima e Cambiamenti Climatici (CRC) University of Perugia Perugia Italy

2. Department of Engineering Enzo Ferrari University of Modena and Reggio Emilia Modena Italy

3. Department of Physics and Geology—Centro di Ricerca sul Clima e Cambiamenti Climatici (CRC) University of Perugia Perugia Italy

Abstract

AbstractConvective Self‐Aggregation (CSA) is a common feature of idealized numerical simulations of the tropical atmosphere in Radiative‐Convective Equilibrium (RCE). However, at coarse grid resolution where deep convection is not fully resolved, the occurrence of this phenomenon is extremely sensitive to subgrid‐scale processes. This study examines the role of mixing and entrainment, provided by the turbulence model and the implicit numerical diffusion. The study compares the results of two models, WRF and SAM, by varying turbulence models, initial conditions, and horizontal spatial resolution. At a coarse grid resolution of 3 km, the removal of turbulent mixing prevents CSA in models with low numerical diffusivity but is preserved in models with high numerical diffusivity. When the horizontal grid resolution is refined to 1 km, CSA can only be achieved by increasing explicit turbulent mixing, even with a small amount of shallow clouds. Therefore, the sensitivity of CSA to horizontal grid resolution is not primarily caused by the decrease in shallow clouds. The analysis of the total water path spectrum suggests that the amplitude of initial humidity perturbations introduced by convection in the free troposphere is the key factor. This amplitude is regulated by turbulent mixing and diffusion at small scales. Prior to the onset of CSA, increased mixing makes updrafts more sensitive to the dryness of the free troposphere, which strengthens the moisture‐convection feedback. This leads to an increased distance between convective cores and a stronger humidity perturbation in the free troposphere, which can destabilize the RCE state.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3