Effect of increased muscle temperature on oxygen uptake kinetics during exercise

Author:

Koga Shunsaku1,Shiojiri Tomoyuki2,Kondo Narihiko3,Barstow Thomas J.4

Affiliation:

1. Applied Physiology Laboratory, Kobe Design University, Kobe 651-21;

2. Laboratory of Exercise and Sports Science, Yokohama City University, Yokohama 236;

3. Faculty of Human Development, Kobe University, Kobe 657, Japan; and

4. Department of Kinesiology, Kansas State University, Manhattan, Kansas 66506-0302

Abstract

Koga, Shunsaku, Tomoyuki Shiojiri, Narihiko Kondo, and Thomas J. Barstow. Effect of increased muscle temperature on oxygen uptake kinetics during exercise. J. Appl. Physiol. 83(4): 1333–1338, 1997.—To test whether increased muscle temperature (Tm) would improve O2 uptake (V˙o 2) kinetics, seven men performed transitions from rest to a moderate work rate [below the estimated lactate threshold (LTest)] and a heavy work rate (V˙o 2 = 50% of the difference between LTest and peakV˙o 2) under conditions of normal Tm (N) and increased Tm (H), produced by wearing hot water-perfused pants before exercise. Quadriceps Tm was significantly higher in H, but rectal temperature was similar for the two conditions. There were no significant differences in the amplitudes of the fast component ofV˙o 2 or in the time constants of the on and off transients for moderate and heavy exercise between the two conditions. The increment inV˙o 2 between the 3rd and 6th min of heavy exercise was slightly but significantly smaller for H than for N. These data suggest that elevated Tm before exercise onset, which would have been expected to increase O2 delivery and off-loading to the muscle, had no appreciable effect on the fast exponential component ofV˙o 2 kinetics (invariant time constant). These data further suggest that elevated Tm does not contribute to the slow component of V˙o 2 during heavy exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3