Breath-by-breath measurement of true alveolar gas exchange

Author:

Beaver W. L.,Lamarra N.,Wasserman K.

Abstract

A method has been developed for on-line breath-by-breath calculation of alveolar gas exchange by correcting the gas exchange measured at the mouth for changes in lung gas stores. The corrections are applied to the total lung gas exchange, which is found by directly subtracting expired from inspired volume of each gas. Corrections are made for both breath-to-breath changes in lung volumes and changes in alveolar gas concentrations. The lung volume correction term has the effect of reducing the large error sensitivity of O2 exchange that has, in the past, resulted from direct determination by total lung gas exchange. Error each gas. Corrections are made for both breath-to-breath changes in lung volumes and changes in alveolar gas concentrations. The lung volume correction term has the effect of reducing the large error sensitivity of O2 exchange that has, in the past, resulted from direct determination by total lung gas exchange. Error each gas. Corrections are made for both breath-to-breath changes in lung volumes and changes in alveolar gas concentrations. The lung volume correction term has the effect of reducing the large error sensitivity of O2 exchange that has, in the past, resulted from direct determination by total lung gas exchange. Error sensitivity analysis shows that the effect of inaccuracies due to errors in measuring gas flow or gas concentrations are similar in magnitude to those in the open-circuit method that has traditionally been used. The algorithm for alveolar gas exchange has been implemented in a computer program for on-line respiratory analysis alongside the open-circuit calculation of gas exchange at the mouth that has been used in out laboratory. By use of several experimental studies, it is shown that there are very apparent breath-to-breath differences between the gas exchange measured by the two methods. During metabolic and respiratory transients, these differences often have significant influence on interpretation of the underlying physiology.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 462 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3