O2 uptake kinetics and the O2 deficit as related to exercise intensity and blood lactate

Author:

Barstow T. J.1,Casaburi R.1,Wasserman K.1

Affiliation:

1. Department of Medicine, Harbor-UCLA Medical Center, Torrance 90509.

Abstract

The dynamic responses of O2 uptake (VO2) to a range of constant power output levels were related to exercise intensity [as percent maximal VO2 and as below vs. above lactic acid threshold (LAT)] and to the associated end-exercise lactate in three groups of subjects: group I, untrained subjects performing leg cycle ergometer exercise; group II, the same subjects performing arm cycle exercise; and group III, trained cyclists performing leg cycle ergometer exercise. Responses were described by a double-exponential equation, with each component having an independent time delay, which reduced to a monoexponential description for moderate (below-LAT) exercise. When a second exponential component to the VO2 response was present, it did not become evident until approximately 80–100 s into exercise. An overall time constant (tau T, determined as O2 deficit for the total response divided by net end-exercise VO2) and a primary time constant (tau P, determined from the O2 deficit and the amplitude for the early primary VO2 response) were compared. The tau T rose with power output and end-exercise lactate levels, but tau P was virtually invariant, even at high end-exercise lactate levels. Moreover the gain of the primary exponential component (as delta VO2/delta W) was constant across power outputs and blood lactate levels, suggesting that the primary VO2 response reflects a linear system, even at higher power outputs. These results suggest that elevated end-exercise lactate is not associated with any discernible slowing of the primary rise in VO2.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3