Assessment of body cell mass at bedside in critically ill patients

Author:

Savalle Magali1,Gillaizeau Florence2,Maruani Gérard3,Puymirat Etienne1,Bellenfant Florence4,Houillier Pascal3,Fagon Jean-Yves1,Faisy Christophe1

Affiliation:

1. Service de Réanimation Médicale, Paris, France;

2. Unité d'Epidémiologie et de Recherche Clinique, Paris, France;

3. Service de Physiologie, Paris, France; and

4. Service de Réanimation Chirurgicale, Université Paris Descartes, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France

Abstract

Critical illness affects body composition profoundly, especially body cell mass (BCM). BCM loss reflects lean tissue wasting and could be a nutritional marker in critically ill patients. However, BCM assessment with usual isotopic or tracer methods is impractical in intensive care units (ICUs). We aimed to modelize the BCM of critically ill patients using variables available at bedside. Fat-free mass (FFM), bone mineral (Mo), and extracellular water (ECW) of 49 critically ill patients were measured prospectively by dual-energy X-ray absorptiometry and multifrequency bioimpedance. BCM was estimated according to the four-compartment cellular level: BCM = FFM − (ECW/0.98) − (0.73 × Mo). Variables that might influence the BCM were assessed, and multivariable analysis using fractional polynomials was conducted to determine the relations between BCM and these data. Bootstrap resampling was then used to estimate the most stable model predicting BCM. BCM was 22.7 ± 5.4 kg. The most frequent model included height (cm), leg circumference (cm), weight shift (Δ) between ICU admission and body composition assessment (kg), and trunk length (cm) as a linear function: BCM (kg) = 0.266 × height + 0.287 × leg circumference + 0.305 × Δweight − 0.406 × trunk length − 13.52. The fraction of variance explained by this model (adjusted r2) was 46%. Including bioelectrical impedance analysis variables in the model did not improve BCM prediction. In summary, our results suggest that BCM can be estimated at bedside, with an error lower than ±20% in 90% subjects, on the basis of static (height, trunk length), less stable (leg circumference), and dynamic biometric variables (Δweight) for critically ill patients.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3