Does adipose tissue influence bioelectric impedance in obese men and women?

Author:

Baumgartner Richard N.1,Ross Robert2,Heymsfield Steven B.3

Affiliation:

1. Clinical Nutrition Program, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131;

2. Department of Physical and Health Education, Queen’s University, Kingston, California; and

3. Obesity Research Center, St. Luke’s-Roosevelt Hospital and Columbia University College of Physicians and Surgeons, New York, New York 10025

Abstract

Baumgartner, Richard N., Robert Ross, and Steven B. Heymsfield. Does adipose tissue influence bioelectric impedance in obese men and women? J. Appl. Physiol.84(1): 257–262, 1998.—Bioelectric-impedance analysis overestimates fat-free mass in obese people. No clear hypotheses have been presented or tested that explain this effect. This study tested the hypothesis that adipose tissue affects measurements of resistance by using data for whole body and body segment resistance and by using muscle, adipose tissue, and bone volumes from magnetic resonance imaging for 86 overweight and obese men and women (body mass index >27 kg/m2; age 38.5 ± 10.2 yr). In multiple-regression analysis, muscle volumes had strong associations with resistance, confirming that the electric currents are conducted primarily in the lean soft tissues. Subcutaneous adipose tissue had a slight but statistically significant effect in women, primarily for the leg, suggesting that adipose tissue can affect measured resistance when the volume of adipose tissue is greater than muscle volume, as may occur in obese women in particular. This resulted in a slight overestimation of fat-free mass (e.g., +3 kg) when a bioelectric- impedance-analysis equation calibrated for nonobese female subjects was applied.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3