Affiliation:
1. Department of Pharmacological and Pharmaceutical Sciences, University of Houston, and
2. Departments of Medicine, Immunology, and Biology of Inflammation Center, and
3. Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
Abstract
Airway dysfunction in asthma is characterized by hyperresponsiveness, heterogeneously narrowed airways, and closure of airways. To test the hypothesis that airway constriction in ovalbumin (OVA)-sensitized OVA-intranasally challenged (OVA/OVA) mice produces mechanical responses that are similar to those reported in asthmatic subjects, respiratory system resistance (Rrs) and elastance (Edyn,rs) spectra were obtained in OVA/OVA and control mice during intravenous methacholine (MCh) infusions. In control mice, MCh at 1,700 μg · kg−1 · min−1produced 1) a 495 and 928% increase of Rrs at 0.5 Hz and 19.75 Hz, respectively, 2) a 33% rise in Edyn,rs at 0.5 Hz, and 3) a mild frequency (f)-dependent increase of Edyn,rs. The same MCh dose in OVA/OVA mice produced 1) elevations of Rrs at 0.5 Hz and 19.75 Hz of 1,792 and 774%, respectively, 2) a 390% rise in Edyn,rs at 0.5 Hz, and 3) marked f-dependent increases of Edyn,rs. During constriction, the f dependence of mechanics in control mice was consistent with homogeneous airway narrowing; however, in OVA/OVA mice, f dependence was characteristic of heterogeneously narrowed airways, closure of airways, and airway shunting. These mechanisms amplify the pulmonary mechanical responses to constrictor stimuli at physiological breathing rates and have important roles in the pathophysiology of human asthma.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献