Tissue resistance and the contractile state of lung parenchyma

Author:

Fredberg J. J.1,Bunk D.1,Ingenito E.1,Shore S. A.1

Affiliation:

1. Harvard School of Public Health, Boston, Massachusetts 02115.

Abstract

When challenged with a contractile agonist in increasing graded concentrations, lung parenchymal tissue assumes a sequence of mechanical states. That sequence is mapped here. Isolated lung parenchymal strips from male Hartley guinea pigs were mounted in a bath containing Krebs solution at 37 degrees C, aerated with 95% O2–5% CO2. One end was attached to a force transducer and the other to a servo-controlled lever arm. After stress adaptation, sinusoidal length oscillations (1% strain at 0.31 Hz) yielded force-length loops from which we computed induced changes in active tension (F), tissue stiffness (E), and hysteresivity (eta) (J. J. Fredberg and D. Stamenovic. J. Appl. Physiol. 67:2408–2419, 1989). Changes of tissue resistance (R) were, by definition, governed by those of eta and E. Histamine (10(-6) -10(-3) M), prostaglandin D2 (10(-5) -10(-4) M), and prostaglandin F2 alpha (10(-5) -10(-4) M) caused dose-related increases of F, eta, and E. Plotting induced changes of E vs. those of F revealed a unique relationship that was identical for these as well as a wider panel of contractile agonists; changes of E and F were closely associated. However, plotting induced changes of E vs. those of eta revealed relationships that differed distinctly between agonists; changes of eta were dissociated from those of F and E. This latter observation demonstrated the existence of distinct mechanical states that differed according to the specific agonist by which the tissue was stimulated. In producing agonist-induced changes in R, changes of E were of equal or greater importance compared with those of eta. We conclude that guinea pig lung parenchyma, viewed as an integrated physiological tissue system, exhibits different kinds as well as varying intensities of mechanical response according to the specific agonist present in the cellular microenvironment. These differences in contractile state reveal themselves principally in the hysteretic nature of the tissue.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 125 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3