Acute and chronic angiotensin-(1–7) restores vasodilation and reduces oxidative stress in mesenteric arteries of salt-fed rats

Author:

Raffai Gábor12,Durand Matthew J.1,Lombard Julian H.1

Affiliation:

1. Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and

2. Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary

Abstract

This study determined the effect of ANG-(1–7) on salt-induced suppression of endothelium-dependent vasodilatation in the mesenteric arteries of male Sprague-Dawley rats. Chronic intravenous infusion of ANG-(1–7), oral administration of the nonpeptide mas receptor agonist AVE-0991, and acute preincubation of the arteries with ANG-(1–7) and AVE-0991 all restored vasodilator responses to both ACh and histamine that were absent in the arteries of rats fed a high-salt (4% NaCl) diet. The protective effects of ANG-(1–7) and AVE-0991 were inhibited by acute or chronic administration of the mas receptor antagonist A-779, the ANG II type 2 (AT2) receptor blocker PD-123319, or N-nitro-l-arginine methyl ester, but not the ANG II type 1 receptor antagonist losartan. Preincubation with the antioxidant tempol or the nitric oxide (NO) donor diethylenetriamine NONOate and acute and chronic administration of the AT2 receptor agonist CGP-42112 mimicked the protective effect of ANG-(1–7) to restore vascular relaxation. Acute preincubation with ANG-(1–7) and chronic infusion of ANG-(1–7) ameliorated the elevated superoxide levels in rats fed a high-salt diet, but the expression of Cu/Zn SOD and Mn SOD enzyme proteins in the vessel wall was unaffected by ANG-(1–7) infusion. These results indicate that both acute and chronic systemic administration of ANG-(1–7) or AVE-0991 restore endothelium-dependent vascular relaxation in salt-fed Sprague-Dawley rats by reducing vascular oxidant stress and enhancing NO availability via mas and AT2 receptors. These findings suggest a therapeutic potential for mas/AT2 receptor activation in preventing the vascular oxidant stress and endothelial dysfunction associated with elevated dietary salt intake.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3