AT2 receptors cross talk with AT1 receptors through a nitric oxide- and RhoA-dependent mechanism resulting in decreased phospholipase D activity

Author:

Andresen Bradley T.,Shome Kuntala,Jackson Edwin K.,Romero Guillermo G.

Abstract

ANG II activation of phospholipase D (PLD) is required for ERK and NAD(P)H oxidase activation, both of which are involved in hypertension. Previous findings demonstrate that ANG II stimulates PLD activity through AT1 receptors in a RhoA-dependent mechanism. Additionally, endogenous AT2 receptors in preglomerular smooth muscle cells attenuate ANG II-mediated PLD activity. In the present study, we examined the signal transduction mechanisms used by endogenous AT2 receptors to modulate ANG II-induced PLD activity through either PLA2 generation of lysophosphatidylethanolamine or Gαi-mediated generation of nitric oxide (NO) and interaction with RhoA. Blockade of AT2 receptors, Gαi and NO synthase, but not PLA2, enhanced ANG II-mediated PLD activity in cells rich in, but not poor in, AT2 receptors. Moreover, NO donors, a direct activator of guanylyl cyclase and a cGMP analog, but not lysophosphatidylethanolamine, inhibited ANG II-mediated PLD activity, whereas an inhibitor of guanylyl cyclase augmented ANG II-induced PLD activity. AT2 receptor- and NO-mediated attenuation of ANG II-induced PLD activity was completely lost in cells transfected with S188A RhoA, which cannot be phosphorylated on serine 188. Therefore, our data indicate that AT2 receptors activate Gαi, subsequently stimulating NO synthase and leading to increased soluble guanylyl cyclase activity, generation of cGMP, and activation of a protein kinase, resulting in phosphorylation of RhoA on serine 188. Furthermore, because AT2 receptors inhibit AT1 receptor signaling to PLD via modulating RhoA activity, AT2 receptor signaling can potentially regulate multiple vasoconstrictive signaling systems through inactivating RhoA.

Publisher

American Physiological Society

Subject

Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3