Recent Advances in Ultrahigh Thermoelectric Performance Material SnSe

Author:

Chung InORCID

Abstract

This perspective discusses the surprising discovery and development of SnSe thermoelectrics. Undoped, hole-doped, and electron-doped SnSe single crystals have successively represented an extraordinarily high thermoelectric figure of merit (ZT) ranging from 2.6 to 2.9, revitalizing efforts on finding new high-performance thermoelectric systems. Their unprecedented performance is mainly attributed to ultralow thermal conductivity arising from the uniquely anisotropic and anharmonic crystal chemistry of SnSe. Soon after the publications on SnSe single crystals, substantial debates were raised on their thermoelectric performance, especially on truth in ultralow thermal conductivity. Very recently, polycrystalline SnSe samples were synthesized, exhibiting lower lattice thermal conductivity and higher ZT than the single crystal samples. This work clearly addressed many questions that have arisen on the intrinsic thermal and charge transport properties of SnSe-based materials. It shows a peak ZT of ~3.1 at 783 K and an average ZT of ~2.0 from 400 to 783 K, which are the record-breaking performances of all bulk thermoelectric materials in any form ever reported.

Publisher

Lab Academic Press

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3